基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对扩展卡尔曼滤波( EKF)算法在移动机器人同时定位和环境建模( SLAM)中的缺点,即非线性系统简单线性化所导致的系统状态方程的不准确性、雅克比矩阵的计算所导致的计算复杂化以及噪声模型不确定性所导致的滤波稳定性降低等问题,提出一种对噪声自适应的UKF-SLAM算法。该算法通过对噪声缩放进而改变噪声模型,利用观测残差序列准确估计观测噪声模型协方差,运用预测的新息协方差和IAE开窗法求其系统状态噪声缩放因子,从而准确估计系统状态噪声模型协方差,实现对不确定的噪声模型能够自适应UKF-SLAM算法。 UKF的Sigma点采样策略是比例对称采样。实验结果证明,该方法相对EKF算法和UKF算法具有较高的定位精度和自适应能力。
推荐文章
基于强跟踪UKF的自适应SLAM算法
同时定位与地图创建
UKF-SLAM
强跟踪滤波器
自适应滤波
基于迭代平方根UKF的SLAM算法
UKF
同步定位与地图构建
状态估计
迭代测量更新
基于梯度自适应规则的自适应UKF算法及其应用
组合导航
UKF算法
梯度自适应规则
代价函数
残差
一种改进的UKF-SLAM算法
移动机器人
同时定位与地图创建
无迹卡尔曼滤波
外部干扰
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于噪声缩放的自适应UKF-SLAM算法
来源期刊 计算机工程 学科 工学
关键词 同时定位和环境建模 无迹卡尔曼滤波 噪声缩放 在线自适应 比例对称采样 开窗法
年,卷(期) 2014,(10) 所属期刊栏目 ?人工智能及识别技术?
研究方向 页码范围 143-149,154
页数 8页 分类号 TP18
字数 5625字 语种 中文
DOI 10.3969/j.issn.1000-3428.2014.10.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王祖麟 江西理工大学电气工程与自动化学院 66 274 9.0 13.0
2 梁毓明 江西理工大学电气工程与自动化学院 32 291 9.0 16.0
3 秦菘 江西理工大学电气工程与自动化学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (21)
参考文献  (8)
节点文献
引证文献  (6)
同被引文献  (32)
二级引证文献  (14)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(2)
  • 二级参考文献(0)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(8)
  • 引证文献(1)
  • 二级引证文献(7)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
同时定位和环境建模
无迹卡尔曼滤波
噪声缩放
在线自适应
比例对称采样
开窗法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导