原文服务方: 计算机应用研究       
摘要:
针对传统的人脸识别算法在处理单样本人脸识别时由于训练样本不足而影响识别率的问题,提出了一种基于分块聚类的多流形判别分析(MMDA)算法.将每个单训练样本划分成若干大小相等且互不重叠的局部小块,利用聚类算法将局部小块聚类到各个类所属的流形上,并使用特征变换最大化类与类之间的分离性;最后,计算出测试人脸的流形与所有训练样本流形之间的距离,采用最近邻分类器完成人脸的识别.在ORL及FERET两大人脸数据库上的实验验证了算法的有效性及可靠性,识别率可分别高达77.22%、57.59%,实验结果表明,相比几种较为先进的人脸识别算法,该算法在处理单训练样本人脸识别问题时取得了更好的识别效果.
推荐文章
基于核稀疏表示的多流形判别分析
人脸识别
多流形
核稀疏表示
流形内部图
流形间图
多黎曼流形的判别分析与融合
图像集分类
稀疏表示
距离学习
流形学习
基于核线性判别分析的人脸个体差异识别算法
个体差异
核线性判别分析
人脸识别
基于二维图像直接线性判别分析的人脸识别算法研究
线性判别分析
主分量分析
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于分块聚类的多流形判别分析人脸识别
来源期刊 计算机应用研究 学科
关键词 人脸识别 单训练样本 多流形判别分析 子空间学习 分块聚类
年,卷(期) 2014,(9) 所属期刊栏目
研究方向 页码范围 2853-2855
页数 3页 分类号 TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2014.09.070
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李伟生 重庆邮电大学计算机科学与技术学院 61 404 12.0 16.0
2 王丽艳 重庆邮电大学移通学院计算机科学系 7 23 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (155)
参考文献  (13)
节点文献
引证文献  (3)
同被引文献  (3)
二级引证文献  (3)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(2)
  • 二级参考文献(3)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(9)
  • 参考文献(3)
  • 二级参考文献(6)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人脸识别
单训练样本
多流形判别分析
子空间学习
分块聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导