基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
根据福建省过去十几年航空货物发送量的数据,针对航空物流预测的不确定性,将粒子群优化算法和最小二乘支持向量机相结合,采用粒子群优化最小二乘支持向量机的方法来建立模型。并将优化后的最小二乘支持向量机模型应用于福建省航空物流的需求预测中,而后通过仿真对结果进行验证。
推荐文章
基于LS-SVM的装备需求时间序列预测
支持向量机
时间序列
混沌
相空间
嵌入维数
基于PSO滚动优化的LS-SVM预测控制
非线性模型预测控制
非线性建模
最小二乘支持向量机
粒子群算法
SVM的物流需求预测模型
物流管理
随机性变化特点
ARIMA?SVM
权值的确定
预测模型
支持向量机
基于LS-SVM的航空器进场飞行时间预测
预计到达时间
飞行时间预测
LS-SVM
RMSE
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化的 LS-SVM的福建航空物流需求预测
来源期刊 物流工程与管理 学科 经济
关键词 粒子群算法 最小二乘支持向量机 航空物流 需求预测
年,卷(期) 2014,(7) 所属期刊栏目
研究方向 页码范围 52-54
页数 3页 分类号 F252.21
字数 3291字 语种 中文
DOI 10.3969/j.issn.1674-4993.2014.07.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周正勇 福州大学经济与管理学院 3 21 3.0 3.0
2 林静 福州大学经济与管理学院 16 59 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (26)
参考文献  (8)
节点文献
引证文献  (5)
同被引文献  (22)
二级引证文献  (32)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(7)
  • 参考文献(0)
  • 二级参考文献(7)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(3)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(8)
  • 引证文献(1)
  • 二级引证文献(7)
2018(10)
  • 引证文献(2)
  • 二级引证文献(8)
2019(12)
  • 引证文献(0)
  • 二级引证文献(12)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
粒子群算法
最小二乘支持向量机
航空物流
需求预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
物流工程与管理
月刊
1674-4993
42-1791/TS
大16开
湖北省武汉市江岸区黄孝河路特1号同安大厦3F
1979
chi
出版文献量(篇)
10851
总下载数(次)
49
总被引数(次)
35105
论文1v1指导