作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
增量式支持向量机学习算法是一种重要的在线学习方法。传统的单增量支持向量机学习算法使用一个数据样本更新支持向量机模型。在增加或删除的数据样本点较多时,这种模型更新模式耗时巨大,具体原因是每个被插入或删除的样本都要进行一次模型参数更新的判断。该文提出一种基于参数规划的多重增量式的支持向量机优化训练算法,使用该训练算法,多重的支持向量机的训练时间大为减少。在合成数据集及真实测试数据集上的实验结果显示,该文提出的方法可以大大降低多重支持向量机训练算法的计算复杂度并提高分类器的精度。
推荐文章
一种在线向量机增强学习算法
在线
向量机
增强学习
一种用于RBF神经网络的支持向量机与BP的混合学习算法
机器学习
支持向量机
神经网络
BP算法
一种基于PSO的混合核支持向量机算法
支持向量机
全局核函数
局部核函数
混合核函数
粒子群优化算法
一种快速加权支持向量机训练算法
加权支持向量机
工作集
目标函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种多重支持向量机在线学习算法的研究
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 支持向量机 增量式算法 核函数 支持向量 Support Vector
年,卷(期) 2014,(1) 所属期刊栏目
研究方向 页码范围 115-119
页数 5页 分类号 TP393
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李琳 17 18 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
增量式算法
核函数
支持向量
Support
Vector
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导