基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以新浪微博中电影主演和导演的粉丝数、相关微博转发量、评论量等微博数据为基础,利用神经网络建立电影票房的预测模型并利用微博数据进行预测研究。研究表明,本文构建的模型可以在一定程度上用于电影票房的预测,其准确率为90%。
推荐文章
一个有效的基于GBRT的早期电影票房预测模型
梯度回归树(GBRT)
电影早期因素
电影票房预测
影响力度量
基于IP品质因子的早期电影票房预测研究
电影票房预测
多元线性回归
支持向量机
BP神经网络
IP品质
一个有效的基于GBRT的早期电影票房预测模型
梯度回归树(GBRT)
电影早期因素
电影票房预测
影响力度量
基于微博情感分析的电影票房预测研究
微博
情感分析
情感本体
自回归情感预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于微博数据的电影票房预测模型研究
来源期刊 电子世界 学科
关键词 微博数据 神经网络 电影票房 预测模型
年,卷(期) 2014,(21) 所属期刊栏目 探索与观察
研究方向 页码范围 13-13,16
页数 2页 分类号
字数 1791字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李龙澍 安徽大学计算机科学与技术学院 199 1780 21.0 29.0
2 杨威 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (54)
参考文献  (5)
节点文献
引证文献  (4)
同被引文献  (3)
二级引证文献  (18)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(5)
  • 引证文献(1)
  • 二级引证文献(4)
2018(9)
  • 引证文献(1)
  • 二级引证文献(8)
2019(6)
  • 引证文献(1)
  • 二级引证文献(5)
研究主题发展历程
节点文献
微博数据
神经网络
电影票房
预测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子世界
半月刊
1003-0522
11-2086/TN
大16开
北京市
2-892
1979
chi
出版文献量(篇)
36164
总下载数(次)
96
总被引数(次)
46655
论文1v1指导