基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 高光谱数据具有较高的谱间分辨率和相关性,给分类处理带来了一定的困难.为了提高分类精度,提出一种结合PCA与移动窗小波变换的高光谱决策融合分类算法.方法 首先,利用相关系数矩阵对原始高光谱数据进行波段分组;然后,利用主成分分析对每组数据进行谱间降维;再根据提出的移动窗小波变换法进行空间特征提取;最后,采用线性意见池(LOP)决策融合规则对多分类器的分类结果进行融合.结果 采用两组来自不同传感器的数据进行实验,所提算法的分类精度和Kappa系数均高于已有的5种分类算法.与SVM-RBF算法相比,本文算法的分类精度高出了8%左右.结论 实验结果表明,本文算法充分挖掘了高光谱图像的谱间-空间信息,能有效提高分类正确率,在小样本情况下和噪声环境中也具有良好的分类性能.
推荐文章
基于降维Gabor特征和决策融合的高光谱图像分类
高光谱图像
分类
Gabor特征
高斯混合模型
决策融合
PCA投影
IHS变换与小波变换相结合的图像融合新方法
图像融合
IHS变换
小波变换
基于联合协同表示与SVM决策融合的高光谱图像分类研究
协同表示
高光谱图像分类
决策融合
支持向量机
基于小波变换的图像融合
小波
图像融合
树状小波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 PCA与移动窗小波变换的高光谱决策融合分类
来源期刊 中国图象图形学报 学科 工学
关键词 高光谱分类 主成分分析 小波变换 决策融合
年,卷(期) 2015,(1) 所属期刊栏目 遥感图像处理
研究方向 页码范围 132-139
页数 8页 分类号 TP751
字数 4957字 语种 中文
DOI 10.11834/jig.20150114
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何明一 西北工业大学电子信息学院 122 1497 22.0 33.0
2 叶珍 西北工业大学电子信息学院 2 17 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (23)
参考文献  (12)
节点文献
引证文献  (13)
同被引文献  (38)
二级引证文献  (10)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(2)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(7)
  • 引证文献(5)
  • 二级引证文献(2)
2019(7)
  • 引证文献(2)
  • 二级引证文献(5)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
高光谱分类
主成分分析
小波变换
决策融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导