基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文考虑了正规矩阵对的任意扰动时广义特征值的变化情况,给出了正规矩阵对任意扰动的Hoffman-Wielandt型扰动界,推广了正规矩阵对的相应的扰动结果.
推荐文章
正规矩阵特征值的Wielandt型绝对扰动上界
正规矩阵
特征值
绝对扰动上界
共轭正规矩阵的等价刻画
共轭正规矩阵
共轭交换
谱分解
共轭特征值
关于正规矩阵的判定
正规矩阵
Schur定理
对角化
特征向量
谱分解
矩阵Hadamard积和Fan积最小特征值的新下界
M-矩阵
Hadamard积
Fan积
逆矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 关于正规矩阵对广义特征值新的扰动界限
来源期刊 计算数学 学科
关键词 正规矩阵对 广义特征值 扰动界
年,卷(期) 2015,(2) 所属期刊栏目
研究方向 页码范围 113-122
页数 分类号
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黎稳 华南师范大学数学科学学院 29 213 8.0 14.0
2 陈艳美 广东技术师范学院计算机科学学院 11 38 3.0 5.0
3 刘冬冬 华南师范大学数学科学学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (1)
二级引证文献  (1)
1939(1)
  • 参考文献(1)
  • 二级参考文献(0)
1982(2)
  • 参考文献(2)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
正规矩阵对
广义特征值
扰动界
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算数学
季刊
0254-7791
11-2125/O1
16开
北京海淀区中关村东路55号
2-521
1979
chi
出版文献量(篇)
892
总下载数(次)
2
总被引数(次)
7033
论文1v1指导