基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Due to the coupling of model parameters, most spatial mixture models for image segmentation can not directly computed by EM algorithm. The paper proposes an evolutional learning algorithm based on weighted likelihood of mixture models for image segmentation. The proposed algorithm consists of multiple generations of learning algorithm, and each stage of learning algorithm corresponds to an EM algorithm of spatially constraint independent mixture model. The smoothed EM result in spatial domain of each stage is considered as the supervision information to guide the next stage clustering. The spatial constraint information is thus incorporated into the independent mixture model. So the coupling problem of the spatial model parameters can be avoided at a lower computational cost. Experiments using synthetic and real images are presented to show the efficiency of the proposed algorithm.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
基于Titan Image软件的QuickBird影像融合
Titan Image
QuickBird
影像融合
质量评价
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Evolutional Learning Algorithm Based on Weighted Likelihood for Image Segmentation
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 image SEGMENTATION MIXTURE models spatial CONSTRAINT EM algorithm
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 61-62
页数 2页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
image
SEGMENTATION
MIXTURE
models
spatial
CONSTRAINT
EM
algorithm
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导