作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高股票价格的预测精度,针对股票价格数据的非平稳非线性的特性,本文运用改进的PSO实现LSSVM的核参数和惩罚系数自适应选择,提出一种SAPSO优化LSSVM股价预测模型,并以此进行实证分析。通过基于SAPSO-LSSVM算法的1步、3步、5步和7步预测结果和不同模型的预测时间和预测均方误差的对比结果可知, SAPSO-LSSVM股价预测模型具有预测精度高,预测时间短的优点,同时能够实现预测参数的自适应选择。
推荐文章
基于改进粒子群优化算法的预测控制
预测控制
标准粒子群优化
参数优化
多变量
耦合
基于改进粒子群算法的烧结配料预测模型
配料优化
粒子群算法
BP神经网络
惯性权重
基于邻域思想的改进粒子群优化算法
粒子群优化
邻域
群智能
改进的粒子群优化算法的研究
算法
优化算法
粒子群
RPSO
瑞利分布
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进的粒子群算法优化LSSVM股价预测研究
来源期刊 山东农业大学学报(自然科学版) 学科 经济
关键词 粒子群算法 股票预测 LSSVM
年,卷(期) 2015,(4) 所属期刊栏目
研究方向 页码范围 628-631
页数 4页 分类号 F830.91
字数 2338字 语种 中文
DOI 10.3969/j.issn.1000-2324.2015.04.031
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘家旗 西北大学经济管理学院 9 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (31)
参考文献  (4)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群算法
股票预测
LSSVM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东农业大学学报(自然科学版)
双月刊
1000-2324
37-1132/S
大16开
山东泰安市岱宗大街61号农业大学学报编辑部
1955
chi
出版文献量(篇)
3505
总下载数(次)
10
总被引数(次)
29464
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导