作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了进一步提高基于高斯混合模型的与文本无关说话人识别系统的识别性能,本文针对高斯混合模型在建模时需要较多的训练数据的缺陷,提出了一种新的应用于小样本说话人识别系统的与文本无关说话人识别方法,该方法综合考虑了模糊集理论、矢量量化和高斯混合模型的优点,通过用模糊矢量量化误差尺度取代传统高斯混合模型的输出概率函数,减少了建模时对训练数据量的要求,提高了模型精度和识别速度。同时由于模糊集理论起到了“数据整形”的作用,所以增强了目标说话人数据的相似性。实验结果表明该方法针对小样本数据的说话人识别系统,识别性能优于传统的基于高斯混合模型的说话人识别系统。
推荐文章
基于FVQMM的说话人识别
说话人识别
矢量量化
混合高斯模型
基于矢量量化方法的说话人识别技术
矢量量化
说话人识别
线性预测倒谱系数
美尔倒谱系数
噪声环境下文本相关说话人识别方法改进
噪声环境
说话人识别
语音
信号处理
检测滤波
基于MVQM说话人识别系统的DSP实现
说话人识别
矢量量化
混合高斯模型
数字信号处理器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FVQMM的说话人识别方法
来源期刊 数据采集与处理 学科 工学
关键词 说话人识别 模糊集理论 矢量量化 高斯混合模型
年,卷(期) 2015,(6) 所属期刊栏目
研究方向 页码范围 1233-1239
页数 7页 分类号 TN912.34
字数 4854字 语种 中文
DOI 10.16337/j.1004-9037.2015.06.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵力 东南大学信息科学与工程学院 308 3093 27.0 44.0
2 杨彦 江苏盐城工业职业技术学院汽车工程学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (24)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(6)
  • 参考文献(4)
  • 二级参考文献(2)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
说话人识别
模糊集理论
矢量量化
高斯混合模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
总被引数(次)
25271
论文1v1指导