基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
复杂背景条件下低对比度目标的跟踪和测量方法,是视觉领域的一个重要课题.低对比度,低信噪比,目标旋转、缩放、被遮挡等非理想状态给跟踪算法的研究带来很大困难,算法既要适应目标和背景的复杂变化,又要保证运算量小,满足工程实时性要求.提出一种基于似然相似度函数的低对比度目标跟踪方法.在建立模型阶段,利用棱锥面方程的单峰特性突出模型中的目标灰度信息,使目标与背景灰度信息的可区分性更高;在模型匹配阶段,从统计学中的极大似然估计方法得到启发,构造一种新的似然相似度函数,与传统的相似度量相比,度量值的可区分性更高,大大提高了匹配区域的无重复模式;最后,将目标跟踪过程转化为对目标跟踪位置的极大似然估计过程.目前,该算法已经成功嵌入TMS320C6416硬件平台.大量实验结果表明,该算法所能探测的目标对比度LSCR最低限度约为3.作为实例,给出复杂背景下低对比度LSCR=4.9时空中飞机的实验结果.
推荐文章
尺度自适应在线鲁棒目标跟踪
在线boosting
半监督学习
尺度自适应
权重图像
目标跟踪
视觉跟踪中模板匹配相似度指标研究
模板匹配
模糊隶属度
相似度度量
视觉跟踪
Bhattacharyya系数
前视红外目标的鲁棒分层跟踪算法
前视红外
目标跟踪
均值漂移
特征匹配
基于变权平均似然函数的粒子滤波改进算法
粒子滤波
似然函数
变权平均
纯方位跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 似然相似度函数在目标跟踪中的鲁棒机理研究
来源期刊 软件学报 学科 工学
关键词 似然相似度函数 均值漂移 实时跟踪 Bhattacharyya系数
年,卷(期) 2015,(1) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 52-61
页数 10页 分类号 TP391
字数 5413字 语种 中文
DOI 10.13328/j.cnki.jos.004619
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (11)
参考文献  (18)
节点文献
引证文献  (9)
同被引文献  (29)
二级引证文献  (9)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(9)
  • 参考文献(5)
  • 二级参考文献(4)
2010(7)
  • 参考文献(4)
  • 二级参考文献(3)
2011(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(6)
  • 引证文献(4)
  • 二级引证文献(2)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
似然相似度函数
均值漂移
实时跟踪
Bhattacharyya系数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导