针对人工判读道岔尖轨伸缩位移图像存在效率低和误差大的问题,为实现尖轨伸缩位移的实时自动监测,提出1种基于层次积分梯度的尖轨伸缩位移图像自动判读算法.采用逐层逼近目标区域的方式,克服尖轨伸缩位移图像中噪声和不相关信息的干扰,以SURF (Speeded Up Robust Features)算子的特征匹配结果为指导,逐步提取图像中的有效区域;利用积分梯度的抗噪特性,根据积分梯度和极值点精确定位刻度尺的特征点位置,结合可信度检验,实现尖轨伸缩位移图像的自动判读.用该算法对监测现场采集的尖轨伸缩位移图像进行判读的结果表明,可在2s内自动判读尖轨伸缩位移图像,总体偏差在0.5mm以内,能够满足目前现场对尖轨伸缩位移实时自动监测的要求.