基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
推荐系统是学术界和工业界研究热门的课题,能有效解决互联网海量数据中"信息过载".首先介绍个性化推荐技术的发展、应用和相关问题,重点分析多种经典的推荐算法及其特点,并给出推荐系统的性能评价方法与指标,最后对个性化推荐的未来发展做出展望.
推荐文章
基于大数据的Web个性化推荐系统设计
大数据
Hadoop
Web个性化推荐
系统设计
Sqoop
H-ICRS算法
基于数据挖掘的移动用户个性化推荐系统研究与设计
数据挖掘
移动用户
个性化推荐
系统设计
基于Web挖掘的个性化网络学习系统设计
Web挖掘
个性化
推荐系统
Web数据挖掘在个性化推荐服务的应用
使用挖掘
关联规则
Apriori
个性化推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于海量数据和Web挖掘的个性化推荐系统研究
来源期刊 山西大同大学学报(自然科学版) 学科 工学
关键词 个性化推荐 海量数据 Web挖掘 推荐算法
年,卷(期) 2015,(3) 所属期刊栏目 数学与计算机科学
研究方向 页码范围 11-17
页数 7页 分类号 TP391
字数 8386字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴海霞 长治学院计算机系 12 71 3.0 8.0
2 连玮 长治学院计算机系 12 9 2.0 2.0
3 李慧芳 长治学院计算机系 13 23 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (94)
共引文献  (268)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (0)
二级引证文献  (0)
1904(1)
  • 参考文献(0)
  • 二级参考文献(1)
1938(1)
  • 参考文献(0)
  • 二级参考文献(1)
1951(1)
  • 参考文献(0)
  • 二级参考文献(1)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(10)
  • 参考文献(0)
  • 二级参考文献(10)
2008(11)
  • 参考文献(0)
  • 二级参考文献(11)
2009(12)
  • 参考文献(1)
  • 二级参考文献(11)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(6)
  • 参考文献(6)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
个性化推荐
海量数据
Web挖掘
推荐算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山西大同大学学报(自然科学版)
双月刊
1674-0874
14-1344/N
大16开
山西省大同市新平旺
1985
chi
出版文献量(篇)
2666
总下载数(次)
9
总被引数(次)
5411
论文1v1指导