基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对复杂背景下运动目标检测存在的背景干扰、目标分割不完整等问题,利用目标静态灰度特征和运动特征,结合目标运动连续特性,提出了一种基于超像素时空显著图的运动目标检测算法。首先对图像基于简单线性迭代聚类算法(SLIC)进行超像素分割,以初始超像素为节点、以运动特征差异性为边建立图结构对超像素区域进行合并,得到最终超像素图像,可以有效解决传统超像素分割方法过分割而导致目标被分为多个部分的问题;然后分别利用目标静态特征对比度和运动特征对比度,得到静态显著性图和运动显著性图,并融合得到最终的时空显著性图;最后利用恒虚警处理技术,结合运动连续特性实现目标的检测,可以有效减少虚警目标。实验结果表明,该算法针对复杂背景具有良好的鲁棒性,并且可以比较完整的保留目标的信息。
推荐文章
基于颜色和运动空间分布的时空显著性区域检测算法
时空一致性优化
颜色的空间分布
运动的空间分布
时空显著性
超像素和阈值分割相结合的显著目标检测算法
显著目标检测
超像素分割
阈值分割
感兴趣区域
结合显著性检测和超像素分割的遥感信息提取算法研究
遥感信息提取
GBVS显著性检测
SLIC超像素分割
训练样本
统计学习
应用视觉显著性的快速有偏聚类超像素算法
超像素
视觉显著性
有偏聚类
边缘细化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于超像素时空显著性的运动目标检测算法
来源期刊 红外技术 学科 工学
关键词 超像素 时空显著性 运动连续性 恒虚警处理
年,卷(期) 2015,(5) 所属期刊栏目 图像处理与仿真
研究方向 页码范围 404-410
页数 7页 分类号 TP391.4
字数 4648字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 明德烈 华中科技大学自动化学院多谱信息处理技术国家级重点实验室 37 240 9.0 14.0
2 徐力 8 33 3.0 5.0
4 云红全 3 6 1.0 2.0
10 孙骁 华中科技大学自动化学院多谱信息处理技术国家级重点实验室 2 9 2.0 2.0
11 鞠雯 2 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (45)
参考文献  (10)
节点文献
引证文献  (6)
同被引文献  (23)
二级引证文献  (19)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(16)
  • 引证文献(0)
  • 二级引证文献(16)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
超像素
时空显著性
运动连续性
恒虚警处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
红外技术
月刊
1001-8891
53-1053/TN
大16开
昆明市教场东路31号《红外技术》编辑部
64-26
1979
chi
出版文献量(篇)
3361
总下载数(次)
13
总被引数(次)
30858
论文1v1指导