基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
K-means算法是数据挖掘领域研究、应用都非常广泛的一种聚类算法,其各种衍生算法很多,其中包括近年出现的以点对称距离为测度的K-means聚类算法。在点对称距离聚类算法的基础上提出一种新的聚类算法,根据对对称性的分析,为对称性的描述增加方向约束,提高对称距离的描述准确性,以此来提高聚类的准确性。同时,针对对称点成对出现的特点,调整了聚类过程中的收敛策略,以对称点对连线中点计算聚类中心,改善了基于对称距离的聚类算法收敛性能。通过数值仿真比较了所提算法与原有算法的优劣,结果显示该算法在计算复杂度不变的条件下获得了更准确的结果,聚类结果更接近数据的真实分类。
推荐文章
基于距离聚类的圆柱类实体路标特征提取算法
移动机器人
激光测距
机器人定位
地图构建
圆柱型实体路标
特征提取
基于多目标进化算法的多距离聚类研究
相似性度量
距离矩阵
多目标RM-MEDA进化算法
标签—实数编码
用核空间距离聚类约简大规模SVM训练集
核距离
聚类
减样
支持向量机
基于扩散距离与几何约束的模型内蕴自对称检测
Laplace-Beltrami
热核特征
扩散距离
谱图理论
内蕴自对称
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于方向约束的对称距离聚类算法
来源期刊 计算机工程与应用 学科 工学
关键词 K-means算法 聚类 对称距离 方向约束
年,卷(期) 2015,(20) 所属期刊栏目 数据库、数据挖掘、机器学习
研究方向 页码范围 120-125
页数 6页 分类号 TP301.6
字数 6553字 语种 中文
DOI 10.3778/j.issn.1002-8331.1310-0118
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李际军 浙江大学计算机科学与技术学院 44 518 9.0 21.0
2 陈强业 浙江大学计算机科学与技术学院 9 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (23)
参考文献  (13)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K-means算法
聚类
对称距离
方向约束
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导