原文服务方: 计算机测量与控制       
摘要:
制粉工艺在矿物加工工程技术中极其重要,而球磨机正是其关键设备;针对球磨机系统时变性、非线性的特点,提出了采用大脑情感学习模型(brain emotional learning,BEL)对球磨机系统实现正向模型和逆模型辨识,并利用粒子群算法(PSO)对整个参数空间进行高效并行搜索使参数最优化,并给出球磨机系统数学模型辨识算法;仿真结果表明,改进方法可使模型输出与球磨机系统输出或输入达到一致,具有模型辨识误差小、算法简单的特点.
推荐文章
基于自适应云粒子群算法的Wiener模型辨识
云模型
粒子群优化
Wiener模型
系统辨识
自适应双层粒子群优化算法
粒子群优化
双层粒子群
自适应
惯性权重
基于自适应粒子群优化的粒子滤波跟踪算法
粒子滤波跟踪
粒子群优化
自适应调整
搜索能力平衡
随机变异
优化算法
基于群体适应度方差的自适应混沌粒子群算法
混沌
均匀性
粒子群算法
适应度方差
收敛比率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群算法的球磨机情感智能自适应辨识算法
来源期刊 计算机测量与控制 学科
关键词 大脑情感学习模型 粒子群算法 球磨机 系统辨识
年,卷(期) 2015,(5) 所属期刊栏目 算法、设计与应用
研究方向 页码范围 1643-1645,1652
页数 4页 分类号 TK323|TP273
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2015.05.059
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 梁礼明 江西理工大学电气工程与自动化学院 93 415 9.0 17.0
2 杨国亮 江西理工大学电气工程与自动化学院 74 384 10.0 16.0
3 余嘉玮 江西理工大学电气工程与自动化学院 3 11 3.0 3.0
4 鲁海荣 江西理工大学电气工程与自动化学院 9 50 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (13)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (9)
二级引证文献  (0)
1961(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(2)
  • 二级参考文献(3)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(6)
  • 参考文献(4)
  • 二级参考文献(2)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
大脑情感学习模型
粒子群算法
球磨机
系统辨识
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导