原文服务方: 微电子学与计算机       
摘要:
针对粒子群算法容易陷入局部最优、收敛精度低、后期收敛速度缓慢的问题,将牛顿-最速下降算子、动态惯性权重、影响度决策引入到粒子群的更新中,提出了融合牛顿-最速下降算子的自适应粒子群算法(NSWPSO).将改进后的算法、标准粒子群算法、自适应惯性权重粒子群算法、线性递减惯性权重粒子群算法同时应用于不同维度的12个测试函数,对搜索结果进行对比分析,T-test差异分析、10维测试函数达到期望值时的寻优率和平均迭代次数分析,可得改进后的算法能够稳定快速准确地搜索到全局最优解.
推荐文章
融合自适应混沌差分进化的粒子群优化算法
粒子群优化算法
差分进化算法
自适应混沌
自适应双层粒子群优化算法
粒子群优化
双层粒子群
自适应
惯性权重
基于自适应选择和变异的改进粒子群算法
粒子群
选择算子
变异算子
基于群体适应度方差的自适应混沌粒子群算法
混沌
均匀性
粒子群算法
适应度方差
收敛比率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合牛顿-最速下降算子的自适应粒子群算法
来源期刊 微电子学与计算机 学科
关键词 粒子群算法 牛顿-最速下降算子 动态惯性权重 影响度决策
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 1-7
页数 7页 分类号 TP18
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 常安定 长安大学理学院 64 249 8.0 11.0
2 李江杰 长安大学理学院 5 1 1.0 1.0
3 陈童 长安大学理学院 6 1 1.0 1.0
4 马晗 长安大学理学院 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (67)
共引文献  (24)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(8)
  • 参考文献(1)
  • 二级参考文献(7)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(11)
  • 参考文献(0)
  • 二级参考文献(11)
2017(7)
  • 参考文献(2)
  • 二级参考文献(5)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群算法
牛顿-最速下降算子
动态惯性权重
影响度决策
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
论文1v1指导