基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
毒蘑菇和可食用蘑菇在外表上非常相似,依靠传统方法难以判别.为了实现判别上的自动化和增强可靠性,提出了一种基于支持向量机的蘑菇毒性判别方法.首先给出了数据样本和数据预处理的方法,其次建立C-SVM模型并进行训练,同时依照一对一方法实现了支持向量机的多分类,最后使用定步长探索法获得了模型的最优参数.仿真实验对比分析了不同样本量,不同参数下所提方法的准确度,验证了该方法在蘑菇毒性判别上的可行性.同时,使用神经网络、决策树方法进行分类器间的性能对比,发现与神经网络、决策树的判别结果相比,所提方法具有准确率高、操作方便、实用性强等优点.
推荐文章
基于逐步判别与支持向量机方法的沉积微相定量识别
测井解释
沉积微相
支持向量机
特征提取
逐步判别
贝叶斯判别法
基于支持向量机的手势识别研究
手势识别
支持向量机
核函数
多分类
基于支持向量机的人脸识别研究
人脸识别
支持向量机
离散小波变换
基于支持向量机的水质浊度补偿研究
支持向量机
水质监测
浊度
网格搜索法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机的蘑菇毒性判别研究
来源期刊 中国农学通报 学科 农学
关键词 毒蘑菇 支持向量机 分类器 机器学习
年,卷(期) 2015,(19) 所属期刊栏目 食品·营养·检测·安全
研究方向 页码范围 232-236
页数 分类号 S24
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭卫 四川农业大学商学院 11 45 3.0 6.0
2 刘峻呈 湖南中医药大学中医学院 9 5 1.0 2.0
3 樊哿 四川农业大学商学院 1 4 1.0 1.0
4 孙山 湖南商学院经济与贸易学院 3 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (125)
共引文献  (244)
参考文献  (13)
节点文献
引证文献  (4)
同被引文献  (10)
二级引证文献  (1)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1966(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(2)
  • 参考文献(0)
  • 二级参考文献(2)
1977(2)
  • 参考文献(0)
  • 二级参考文献(2)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(3)
  • 参考文献(0)
  • 二级参考文献(3)
1986(4)
  • 参考文献(0)
  • 二级参考文献(4)
1989(3)
  • 参考文献(0)
  • 二级参考文献(3)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(11)
  • 参考文献(0)
  • 二级参考文献(11)
1999(9)
  • 参考文献(1)
  • 二级参考文献(8)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(13)
  • 参考文献(1)
  • 二级参考文献(12)
2002(9)
  • 参考文献(0)
  • 二级参考文献(9)
2003(11)
  • 参考文献(1)
  • 二级参考文献(10)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(2)
  • 二级参考文献(3)
2008(8)
  • 参考文献(4)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
毒蘑菇
支持向量机
分类器
机器学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国农学通报
旬刊
1000-6850
11-1984/S
大16开
北京朝阳区麦子店街22号楼中国农学会期刊处
2-772
1984
chi
出版文献量(篇)
26902
总下载数(次)
53
总被引数(次)
269206
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导