作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在交通标志实时识别过程中,由于参考图像与实测图像不是同时获取的,因此摄像机与被摄交通标志之间的位置难以保证完全相同。于是,所获取的参考交通标志图像与实测交通标志图像之间就可能产生几何失真。几何失真将对于图像识别的结果带来很大的影响。因此,需要寻找一种具有旋转和比例不变性的图像识别方法,以满足实际应用中的需要。针对上述问题,提出了一种基于幅值谱和神经网络的交通标志识别算法。实验结果表明,所提出的识别算法具有很好地识别能力。
推荐文章
基于BP神经网络的交通标志识别
交通标志
BP神经网络
标志识别
物联网
应用深层卷积神经网络的交通标志识别
交通标志
识别
卷积神经网络
深度学习
基于不变矩和神经网络的交通标志识别方法研究
智能运输系统
交通标志识别
神经网络
BP算法
不变矩
基于多尺度卷积神经网络的交通标志识别
模式识别系统
交通标志识别
多尺度卷积神经网络
SoftMax分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于幅值谱和神经网络的交通标志识别算法研究
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 交通标志识别 神经网络 幅值谱
年,卷(期) 2015,(9X) 所属期刊栏目
研究方向 页码范围 156-158
页数 3页 分类号 TP391.41
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 魏艳艳 12 36 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通标志识别
神经网络
幅值谱
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导