基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统人工智能在随机复杂环境的适应及交互能力较低问题,有机地将经典强化学习Q(λ)算法与多主体协同行为进行高度融合,提出了一种具有记忆自学习能力的快速动态寻优算法.该算法通过与外部环境反复的交互来进行自学习改进,并利用值函数矩阵储存状态-动作对记忆,提出了联系记忆方式,有效地对传统Q(λ)算法的动作空间进行降维处理,减小了记忆矩阵的规模;基于多主体协同合作的概念,采用多个主体同时对记忆矩阵进行迭代更新,明显提高了更新速度;在预学习形成良好的记忆后,能快速地进行在线动态优化.最后,文章利用电力系统经典无功优化模型进行了算法测试,IEEE 118节点和IEEE 300节点标准算例仿真表明:本文所提算法在保证较高收敛性的同时,寻优速度能提高到遗传算法、蚁群算法、粒子群等传统人工智能方法的5~40倍,非常适用于大规模复杂电网的在线滚动无功优化.
推荐文章
一种具有自学习能力的动态调度决策机制
动态调度
合同网
强化学习
自学习
一种新型自学习模糊控制器
学习
遗传算法
混沌
模糊控制器
一种求解动态优化问题的免疫文化基因算法
动态优化
人工免疫
禁忌搜索
柯西变异
混沌系统的一种自学习模糊控制
遗传算法
自学习模糊控制
混沌控制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种具有记忆自学习能力的快速动态寻优算法及其无功优化求解
来源期刊 中国科学(技术科学) 学科
关键词 自学习 记忆矩阵 快速动态寻优 多主体协同 无功优化
年,卷(期) 2016,(3) 所属期刊栏目 论文
研究方向 页码范围 256-267
页数 12页 分类号
字数 语种 中文
DOI 10.1360/N092015-00213
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 余涛 165 1484 19.0 31.0
2 张孝顺 30 202 9.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (11)
参考文献  (23)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(3)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(2)
  • 二级参考文献(0)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(6)
  • 参考文献(4)
  • 二级参考文献(2)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自学习
记忆矩阵
快速动态寻优
多主体协同
无功优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国科学(技术科学)
月刊
1674-7259
11-5844/TH
北京东黄城根北街16号
chi
出版文献量(篇)
3361
总下载数(次)
5
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导