基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对脉冲耦合神经网络(pulse coupled neural network,PCNN)模型需要人工方式确定循环迭代次数,以及香农熵定义中基于对数函数存在零点处无意义的缺陷和对数运算影响处理速度等问题,提出了一种基于最小倒数交叉熵自适应生成迭代次数的PCNN图像分割算法.首先,对传统的PCNN模型进行简化,并对神经元的反馈输入函数、连接输入函数和动态阈值函数进行修正;然后,应用二维倒数交叉熵的分解算法,通过两个一维倒数交叉熵的组合获得二维倒数交叉熵;最后,采用最小倒数交叉熵准则确定PCNN网络的循环迭代次数,实现对图像的最优分割.仿真实验验证了该方法的有效性.
推荐文章
基于改进型脉冲耦合神经网络的图像分割方法
脉冲耦合神经网络
图像分割
图像熵
阈值
脉冲耦合神经网络在图像分割中的应用研究
图像分割
脉冲耦合神经网络
最大熵
最小交叉熵
一种改进的脉冲耦合神经网络图像分割方法
图像分割
脉冲耦合神经网络
T sallis熵
基于改进型脉冲耦合神经网络的图像增强
区域面积
脉冲耦合神经网络
边缘提取
噪声
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于倒数交叉熵的改进脉冲耦合神经网络图像分割算法
来源期刊 扬州大学学报(自然科学版) 学科 工学
关键词 图像分割 脉冲耦合神经网络 倒数交叉熵 迭代
年,卷(期) 2016,(2) 所属期刊栏目
研究方向 页码范围 51-56
页数 6页 分类号 TP391.4
字数 语种 中文
DOI 10.19411/j.1007-824x.2016.02.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马正华 83 405 11.0 15.0
2 吕继东 21 184 5.0 13.0
3 徐黎明 6 95 3.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (164)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(6)
  • 参考文献(4)
  • 二级参考文献(2)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(8)
  • 参考文献(2)
  • 二级参考文献(6)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像分割
脉冲耦合神经网络
倒数交叉熵
迭代
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
扬州大学学报(自然科学版)
季刊
1007-824X
32-1472/N
大16开
江苏省扬州市大学南路88号
28-48
1974
chi
出版文献量(篇)
1577
总下载数(次)
2
论文1v1指导