基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
作物病害图像分割是利用数字图像处理技术进行病害识别的关键性技术环节之一,现有病害分割方法存在病害区域外部形态特征细节保留程度差和颜色纹理信息丢失等问题.针对上述问题,提出一种基于改进遗传算法的脉冲耦合神经网络分割方法.首先改进遗传算法,以信息熵的加权线性组合作为优化适应度函数用以在每次迭代过程中评价脉冲耦合神经网络对于病害区域的分割效果,通过计算种群适应度方差和适应度均值自适应调整遗传算法的交叉概率和变异概率;然后将改进遗传算法与脉冲耦合神经网络相结合,实现网络连接系数、衰减系数和幅值系数的自动优化调节;最后利用改进遗传脉冲耦合神经网络分割算法,在RGB子空间分别对病害图像进行病害区域分割,将分割结果利用RGB颜色空间子图合并策略实施合并,从而得到最终的图像分割结果.将此算法、最小交叉熵阈值化算法和GA-PCNN算法用于玉米黑瘤粉病彩色图像病害区域分割.结果表明:从主观视觉评测角度,此算法分割效果较好,能够较为细致的呈现病害区域的外部形态特征和较为完好的保留病害区域的颜色纹理特征;从客观量化评测角度,此分割算法在目标区域分割匹配率、错分率和正确率上明显优于最小交叉熵阈值化算法和GA-PCNN算法.
推荐文章
基于改进型脉冲耦合神经网络的图像分割方法
脉冲耦合神经网络
图像分割
图像熵
阈值
基于改进遗传神经网络的MR脑组织图像分割方法
MR图像
神经网络
遗传算法
脑组织分割
基于卷积神经网络改进的图像自动分割方法
图像分割
卷积神经网络
多尺度特征融合
残差连接
三维重建
基于改进型脉冲耦合神经网络的图像增强
区域面积
脉冲耦合神经网络
边缘提取
噪声
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进遗传脉冲耦合神经网络的玉米病害图像分割方法
来源期刊 吉林农业大学学报 学科 工学
关键词 玉米黑瘤粉病 遗传算法 脉冲耦合神经网络 图像分割
年,卷(期) 2013,(4) 所属期刊栏目
研究方向 页码范围 496-500
页数 分类号 TP311
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王增辉 吉林农业大学信息技术学院 37 312 6.0 17.0
2 温长吉 吉林农业大学信息技术学院 23 130 5.0 11.0
3 徐亚静 吉林农业大学信息技术学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (215)
参考文献  (12)
节点文献
引证文献  (5)
同被引文献  (58)
二级引证文献  (12)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(10)
  • 参考文献(1)
  • 二级参考文献(9)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(6)
  • 参考文献(2)
  • 二级参考文献(4)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(5)
  • 引证文献(2)
  • 二级引证文献(3)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
玉米黑瘤粉病
遗传算法
脉冲耦合神经网络
图像分割
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
吉林农业大学学报
双月刊
1000-5684
22-1100/S
大16开
吉林省长春市新城大街2888号
1979
chi
出版文献量(篇)
3333
总下载数(次)
5
总被引数(次)
33048
论文1v1指导