基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决语音情感识别系统中训练数据和测试数据来自不同数据库所引起的识别率降低的问题,提出了一种基于稀疏特征迁移的语音情感识别方法。通过引入稀疏编码获取情感特征在不同数据库条件下的共同稀疏表示;同时引入最大区分差异(Maximum mean discrepancy ,MMD)来衡量不同数据库条件下稀疏表示分布之间的距离,并将其作为稀疏编码目标函数的约束条件,从而获得较为鲁棒的稀疏特征。实验结果表明,相比传统语音情感识别方法,基于稀疏特征迁移的语音情感识别方法显著提高了跨库条件下的情感识别率。
推荐文章
基于情感特征分类的语音情感识别研究
语音情感识别
情感特征分类
改进D-S证据理论
证据信任度信息熵
动态先验权重
数据融合
基于基频特征的情感语音识别研究
语音信号
基频
情感特征
情感识别
基于BP特征选择的语音情感识别
语音情感识别
特征提取
SVM
特征子集
BP特征选择
混库
分类矩阵
基于NAQ的语音情感识别研究
迭代自适应逆滤波
归一化振幅商
F-ratio准则
混合高斯模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏特征迁移的语音情感识别
来源期刊 数据采集与处理 学科 工学
关键词 语音情感识别 特征迁移 稀疏编码
年,卷(期) 2016,(2) 所属期刊栏目
研究方向 页码范围 325-330
页数 6页 分类号 TN912.3
字数 4163字 语种 中文
DOI 10.16337/j.1004-9037.2016.02.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵力 东南大学儿童发展与学习科学教育部重点实验室 308 3093 27.0 44.0
5 金赟 东南大学儿童发展与学习科学教育部重点实验室 13 240 8.0 13.0
6 宋鹏 烟台大学计算机与控制工程学院 12 42 4.0 6.0
7 查诚 东南大学信息科学与工程学院 9 74 5.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (35)
参考文献  (8)
节点文献
引证文献  (8)
同被引文献  (20)
二级引证文献  (3)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(4)
  • 引证文献(4)
  • 二级引证文献(0)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
语音情感识别
特征迁移
稀疏编码
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
总被引数(次)
25271
论文1v1指导