基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
采用小波变换(wavelet transform,WT)和相关向量机(relevance vector machine,RVM)结合的方法对风电场发电功率短期预测进行研究.先利用小波变换将信号分解为不同频率的子序列,提取出风速中的低频趋势分量和高频波动分量;再结合风向和温度数据,运用RVM在不同分量上分别进行预测,并通过重构得到功率的预测结果.此方法应用于国内某风电场,仿真结果表明,通过小波分析能够把握风速变换规律,RVM预测法有较强的学习能力,小波—相关向量机法有效提高了预测精度,表明了该方法的可行性.
推荐文章
应用小波变换和支持向量机的商业电力负荷预测
商业电力
负荷预测
支持向量机
小波分解
节能
数据采集系统
粒子群算法
基于小波变换和支持向量机的人脸检测
人脸检测
小波变换
支持向量机
混沌最小二乘支持向量机的短期风功率预测
混沌
LS-SVM
风功率预测
相空间重构
基于小波变换和支持向量机的彩色纹理识别
纹理
彩色空间
小波变换(WT)
支持向量机(SVM)
纹理识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波变换和相关向量机的短期风功率预测
来源期刊 高压电器 学科
关键词 风力发电 短期功率预测 小波变换 相关向量机
年,卷(期) 2016,(8) 所属期刊栏目 研究与分析
研究方向 页码范围 141-145
页数 5页 分类号
字数 语种 中文
DOI 10.13296/j.1001-1609.hva.2016.08.024
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (119)
共引文献  (229)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(15)
  • 参考文献(0)
  • 二级参考文献(15)
2009(19)
  • 参考文献(1)
  • 二级参考文献(18)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(20)
  • 参考文献(3)
  • 二级参考文献(17)
2012(12)
  • 参考文献(5)
  • 二级参考文献(7)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风力发电
短期功率预测
小波变换
相关向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
高压电器
月刊
1001-1609
61-1127/TM
大16开
西安市西二环北段18号
52-36
1958
chi
出版文献量(篇)
5932
总下载数(次)
16
论文1v1指导