基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对抽油机工况数据可从位移、载荷、电流等多个方面进行描述,若仅仅使用一个特征向量来描述抽油机工况数据会使其信息过于简化,丢失一部分有效信息的问题,以及工况数据具有多义性的特征,提出基于多示例多标记的抽油机故障诊断.该学习方法中,用抽油机的位移、载荷、电流数据作为抽油机工况样本包的多个示例,使用k-medoids聚类算法对样本包进行聚类,将多个样本包转换为若干示例,新示例的每一维表示样本包到样本各聚类中心的距离,再利用MLSVM算法对转换后的多标记问题进行求解.实验结果表明,多示例多标记学习能够及时、准确地诊断出抽油机故障问题.
推荐文章
基于Stacking模型融合的抽油机故障诊断算法
抽油机
故障诊断
Stacking
模型融合
基于Stacking模型融合的抽油机故障诊断算法
抽油机
故障诊断
Stacking
模型融合
基于支持向量机的抽油机故障诊断研究
故障诊断
支持向量机
机器学习
基于多信号模型的故障诊断策略设计
多信号模型
故障诊断
诊断策略
故障检测
故障隔离
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多示例多标记的抽油机故障诊断
来源期刊 计算机系统应用 学科
关键词 多示例多标记 抽油机 故障诊断
年,卷(期) 2016,(12) 所属期刊栏目 研究开发
研究方向 页码范围 285-288
页数 4页 分类号
字数 2557字 语种 中文
DOI 10.15888/j.cnki.csa.005255
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 许少华 东北石油大学计算机与信息技术学院 52 329 11.0 15.0
5 陈妍 东北石油大学计算机与信息技术学院 2 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (13)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多示例多标记
抽油机
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导