基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
模糊C均值聚类对初始参数有着较强的依赖性,文中针对其对初始聚类中心敏感的问题,提出利用量子粒子群来优化FCM的初始聚类中心.粒子群优化算法具有较强的全局搜索能力,但局部搜索能力不足,因此借助于量子理论,将粒子群量子化,借助量子旋转门改变粒子的移动,同时利用量子非门增加种群的多样性,加强粒子群优化算法的局部寻优能力.并最终利用量子粒子群优化算法搜寻FCM算法的初始聚类中心,通过实验仿真表明,改进的算法在加快搜索速度的同时,能获得较为稳定的聚类中心且分割效果明显优于标准的FCM算法.
推荐文章
改进的粒子群优化模糊C均值聚类算法
模糊C均值聚类
粒子群优化
聚类有效性
基于免疫粒子群优化的模糊C均值聚类算法
粒子群优化算法
模糊聚类
模糊C均值算法
免疫系统
对当基
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于量子粒子群模糊C均值聚类算法应用研究
来源期刊 电子科技 学科 工学
关键词 模糊C均值聚类 抗噪性 道岔缺口 图像分割
年,卷(期) 2016,(11) 所属期刊栏目 协议·算法及仿真
研究方向 页码范围 137-141
页数 5页 分类号 TN911.73
字数 3865字 语种 中文
DOI 10.16180/j.cnki.issn1007-7820.2016.11.039
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (30)
参考文献  (1)
节点文献
引证文献  (3)
同被引文献  (12)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
模糊C均值聚类
抗噪性
道岔缺口
图像分割
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子科技
月刊
1007-7820
61-1291/TN
大16开
西安电子科技大学
1987
chi
出版文献量(篇)
9344
总下载数(次)
32
总被引数(次)
31437
论文1v1指导