基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对互联网,尤其是微博平台中大学生用户的海量文本,应用贝叶斯网络分类器对微博评论进行分类.基于贝叶斯,通过先验概率和似然度求出后验概率的原理,针对具体事件选择不同的训练集和调整特征词库,得到大学生对热点事件关注相较于整体网民更加理性、冷静的结论,可为研究大学生心理健康及大学生舆情提供参考.
推荐文章
基于改进的朴素贝叶斯文本分类研究
文本分类
朴素贝叶斯
K近邻
知网
中文分词
基于 MapReduce 的平均多项朴素贝叶斯文本分类
文本分类
朴素贝叶斯
并行计算
冗余特征
大数据
基于Hadoop的Dirichlet朴素贝叶斯文本分类算法
文本分类
云计算
MapReduce
朴素贝叶斯文本
数据平滑
基于重要事件的文本分类方法研究
文本分类
文本表示
重要事件
SVM
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于贝叶斯分类的大学生关注热点事件微博文本分类方法研究
来源期刊 软件导刊 学科 工学
关键词 贝叶斯分类 文本分类 文本分词 概率估测 大学生 热点事件
年,卷(期) 2016,(6) 所属期刊栏目 应用技术与研究
研究方向 页码范围 112-114
页数 3页 分类号 TP319
字数 3965字 语种 中文
DOI 10.11907/rjdk.161251
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 殷复莲 中国传媒大学信息工程学院 24 53 4.0 6.0
2 张晓宇 中国传媒大学信息工程学院 2 0 0.0 0.0
3 冯晴 中国传媒大学信息工程学院 2 0 0.0 0.0
4 王思佳 中国传媒大学信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (16)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
贝叶斯分类
文本分类
文本分词
概率估测
大学生
热点事件
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导