基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了1种基于SVDD(support vector domain description)的集成剪枝算法.首先通过有放回的随机采样训练出若干个学习模型,接着通过支持向量域描述算法寻找1个最小超球面,使其包含不少于一定数量的预测模型;然后得到1个可以确定球心位置的稀疏权重向量;最后选取该向量中非零元素所对应的学习模型解决二分类问题.通过多组实验将基于SVDD的集成剪枝算法与Bagging以及其他集成剪枝算法进行比较,验证了所提出算法的准确性和高效性.
推荐文章
基于支持向量域描述的学习分类器
支持向量域描述
学习分类器
支持向量机
序列最小优化
基于数据域描述的模糊支持向量回归
支持向量机
数据域描述
模糊隶属度
建模
基于Bagging支持向量机集成的入侵检测研究
入侵检测
支持向量机
集成
Bagging
基于RBF的支持向量数据描述算法性能分析
支持向量数据描述
核函数
高斯核函数
单值分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量域描述的稀疏Bagging算法
来源期刊 中国科技论文 学科 工学
关键词 集成学习 支持向量域描述 最小超球面
年,卷(期) 2016,(20) 所属期刊栏目
研究方向 页码范围 2363-2367
页数 5页 分类号 TP399
字数 4714字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李建武 北京理工大学计算机学院 12 76 5.0 8.0
2 闫文真 北京理工大学计算机学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (10)
二级引证文献  (0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
集成学习
支持向量域描述
最小超球面
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国科技论文
月刊
2095-2783
10-1033/N
大16开
北京市海淀区中关村大街35号教育部科技发展中心
2006
chi
出版文献量(篇)
4942
总下载数(次)
10
总被引数(次)
14783
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导