基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
连续域蚁群优化算法是蚁群优化算法的一个重要研究方向,针对连续域蚁群优化算法(ACOR)计算时间较长、易陷入局部最优的问题,提出了一种基于人工蜂群的连续域蚁群优化算法(ABC-ACOR).首先,引入一种替代机制来选择指导解,以替换原来的基于排序的选择方式,目的是节约计算时间和尽可能地保持搜索的多样性;其次,结合人工蜂群算法的搜索策略来提高算法的全局搜索能力,进一步减少计算时间和提高求解精度.通过对大量的测试函数进行仿真实验,结果表明,ABC-ACOR算法较现有的一些连续域蚁群算法具有更好的寻优能力.
推荐文章
优化人工蜂群算法的跨域虚拟网络映射算法
人工蜂群
虚拟网络
自治域
服务代理
蜂群—蚁群自适应优化算法
优化问题
蚁群优化
人工蜂群算法
基于人工蜂群优化的K均值聚类算法
聚类分析
K均值算法
人工蜂群算法
聚类中心
优化
改进的人工蜂群算法
人工蜂群算法
差分进化算法
种群初始化
搜索方程
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于人工蜂群的连续域蚁群优化算法
来源期刊 计算机工程与科学 学科 工学
关键词 蚁群优化算法 连续域 人工蜂群 全局搜索 替代机制
年,卷(期) 2016,(6) 所属期刊栏目 人工智能
研究方向 页码范围 1156-1163
页数 8页 分类号 TP18
字数 5212字 语种 中文
DOI 10.3969/j.issn.1007-130X.2016.06.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 葛洪伟 86 456 11.0 17.0
5 袁运浩 江南大学物联网工程学院 9 28 4.0 5.0
6 苏树智 江南大学物联网工程学院 7 53 4.0 7.0
7 周袅 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (160)
参考文献  (17)
节点文献
引证文献  (4)
同被引文献  (16)
二级引证文献  (5)
1947(1)
  • 参考文献(0)
  • 二级参考文献(1)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(6)
  • 参考文献(1)
  • 二级参考文献(5)
1997(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(8)
  • 参考文献(1)
  • 二级参考文献(7)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(10)
  • 参考文献(0)
  • 二级参考文献(10)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(5)
  • 参考文献(2)
  • 二级参考文献(3)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(6)
  • 引证文献(4)
  • 二级引证文献(2)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
蚁群优化算法
连续域
人工蜂群
全局搜索
替代机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导