基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对TOF相机原始获取深度图像分辨率非常低,且超分辨率重建中易出现边缘模糊和伪影的问题,提出一种基于二阶微分算子和测地距离的深度图超分辨率重建算法.以彩色信息作为引导,运用双边滤波的思想,采用测地距离把低分辨率深度图像的空间高斯核与高分辨率彩色图像的幅度高斯核函数结合起来,体现了深度图与彩色图的一致性,并引入深度核函数对两个相邻像素具有类似颜色但深度值不同的情况进行处理,抑制颜色相似但深度值不同区域的伪影现象,恢复出边缘轮廓显著的高分辨率深度图.实验结果表明,该算法可以有效保护图像的边缘结构且解决伪影问题,并在定性和定量两个方面都可达到很好的效果.
推荐文章
基于金字塔式双通道卷积神经网络的深度图像超分辨率重建
深度图像
超分辨率重建
双通道卷积神经网络
金字塔式网络结构
基于深度学习的单图像超分辨率重建研究综述
单图像超分辨率重建
深度学习
密集卷积网络
生成式对抗网络
基于深度学习的图像超分辨率重建技术的研究
人工智能
深度学习
超分辨率
制造工艺
基于深度学习的辐射图像超分辨率重建方法
辐射图像
超分辨率重建
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于二阶微分算子和测地距离的深度图超分辨率重建
来源期刊 计算机应用与软件 学科 工学
关键词 深度超分辨率重建 二阶微分算子 测地距离 TOF相机
年,卷(期) 2016,(7) 所属期刊栏目 图像处理与应用
研究方向 页码范围 200-203
页数 4页 分类号 TP391
字数 4053字 语种 中文
DOI 10.3969/j.issn.1000-386x.2016.07.046
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡良梅 合肥工业大学计算机与信息学院图像信息处理研究室 44 683 13.0 25.0
2 张旭东 合肥工业大学计算机与信息学院图像信息处理研究室 61 574 15.0 21.0
3 杨慧 合肥工业大学计算机与信息学院图像信息处理研究室 7 83 5.0 7.0
4 董文菁 合肥工业大学计算机与信息学院图像信息处理研究室 4 36 3.0 4.0
5 陈仲海 合肥工业大学计算机与信息学院图像信息处理研究室 4 36 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (17)
参考文献  (11)
节点文献
引证文献  (5)
同被引文献  (9)
二级引证文献  (1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
深度超分辨率重建
二阶微分算子
测地距离
TOF相机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导