原文服务方: 计算机应用研究       
摘要:
为提高非支配排序遗传算法(N S GA-Ⅱ)的搜索精度和多样性,借鉴差分进化中加强局部搜索的策略,提出了一种改进的NSGA-Ⅱ算法(LDMNSGA-Ⅱ)。该算法利用拉丁超立方体抽样技术对解种群进行初始化,保证种群的初始分布能够均匀,采用差分进化中的变异引导算子和交叉算子替换N S GA-Ⅱ的交叉算子,加强局部搜索能力和提高搜索精度,同时保留N S GA-Ⅱ中的变异算子,保留算法多样性。四个经典测试函数的仿真结果表明,该算法LDMNSGA-Ⅱ在解决多目标优化问题中表现出了良好的综合性能。
推荐文章
一种多目标非线性优化的NSGA-Ⅱ改进算法
多目标
非线性
NSGA-Ⅱ
Pareto最优解
基于改进NSGA-Ⅱ算法的微电网多目标优化研究
微电网
多目标优化
信息熵
Pareto最优解集
基于差分进化算法和NSGA-Ⅱ的混合算法
改进的DE-NSGAⅡ算法
拉丁超立方体抽样技术
剪枝方法
参数自适应策略
基于改进的NSGA-Ⅱ多目标优化方法研究
降维
搜索空间
遗传算子
神经网络
多目标优化
非支配解
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的基于 NSGA-Ⅱ和DE的多目标混合进化算法
来源期刊 计算机应用研究 学科
关键词 NSGA-Ⅱ 拉丁超立方抽样技术 差分算子 变异算子 多目标优化
年,卷(期) 2016,(12) 所属期刊栏目 算法研究探讨
研究方向 页码范围 3638-3642
页数 5页 分类号 TP181
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2016.12.027
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 潘晓英 西安邮电大学计算机学院 40 149 7.0 11.0
2 朱静 西安邮电大学计算机学院 2 8 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (69)
共引文献  (505)
参考文献  (17)
节点文献
引证文献  (1)
同被引文献  (7)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(4)
  • 参考文献(1)
  • 二级参考文献(3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(8)
  • 参考文献(1)
  • 二级参考文献(7)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(2)
  • 二级参考文献(3)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(6)
  • 参考文献(3)
  • 二级参考文献(3)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
NSGA-Ⅱ
拉丁超立方抽样技术
差分算子
变异算子
多目标优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导