原文服务方: 计算机应用研究       
摘要:
针对传统多目标优化算法在其领域存在的多个子目标不能同时取优的问题,提出了一种基于改进的非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)多目标优化方法.以多目标优化遗传算法为基础,多输入多输出的反向传播(back-propagation,BP)神经网络为适应度函数评价体系,保证算法快速收敛并搜索到全局最优解集.该算法在建模前对实验数据进行主成分分析,降低了运算时间和算法难度,通过在遗传进化过程中引进正态分布交叉算子(normal distribution crossover,NDX)和改进的自适应调整变异算子,实现了多个目标同时取优,保证Pareto最优解集快速、准确地获取.仿真实验使用UCI数据集,通过与其他常用的多目标优化算法对比,验证了改进的NSGA-Ⅱ算法精确度更高、收敛速度更快、稳定性更强.
推荐文章
基于改进NSGA-Ⅱ算法的微电网多目标优化研究
微电网
多目标优化
信息熵
Pareto最优解集
NSGA-Ⅱ和NSGA-Ⅲ应用于换热网络多目标优化的对比
NSGA-Ⅱ
NSGA-Ⅲ
换热网络
多个目标
优化
基于正交设计 NSGA-Ⅱ算法的制动器多目标优化
制动器
多目标优化
改进算法
正交设计
改进NSGA-Ⅱ算法在锅炉燃烧多目标优化中的应用
多目标优化
锅炉燃烧
NSGA-Ⅱ
BP神经网络
Pareto解集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进的NSGA-Ⅱ多目标优化方法研究
来源期刊 计算机应用研究 学科
关键词 降维 搜索空间 遗传算子 神经网络 多目标优化 非支配解
年,卷(期) 2018,(6) 所属期刊栏目 算法研究探讨
研究方向 页码范围 1733-1737
页数 5页 分类号 TP391.9
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2018.06.029
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 韩晓霞 太原理工大学信息工程学院 17 79 5.0 8.0
2 路艳雪 太原理工大学信息工程学院 2 21 2.0 2.0
3 赵超凡 太原理工大学信息工程学院 3 23 2.0 3.0
4 吴晓锋 太原理工大学信息工程学院 1 19 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (108)
共引文献  (365)
参考文献  (15)
节点文献
引证文献  (19)
同被引文献  (38)
二级引证文献  (3)
1955(1)
  • 参考文献(0)
  • 二级参考文献(1)
1963(2)
  • 参考文献(1)
  • 二级参考文献(1)
1978(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(8)
  • 参考文献(1)
  • 二级参考文献(7)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(10)
  • 参考文献(0)
  • 二级参考文献(10)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(10)
  • 参考文献(1)
  • 二级参考文献(9)
2002(13)
  • 参考文献(2)
  • 二级参考文献(11)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(3)
  • 二级参考文献(2)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(11)
  • 参考文献(1)
  • 二级参考文献(10)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(14)
  • 引证文献(13)
  • 二级引证文献(1)
2020(5)
  • 引证文献(3)
  • 二级引证文献(2)
研究主题发展历程
节点文献
降维
搜索空间
遗传算子
神经网络
多目标优化
非支配解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导