基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,随着深度学习的发展,卷积神经网络已经广泛运用到图像识别领域,它不仅提高了识别的准确率,同时自特征提取方面的效果也优于许多传统的算法.提出一种基于卷积神经网络的人脸识别算法.该方法主要涉及两方面,一是使用卷积神经网络对训练集进行特征提取;二是将提取的特征图片输入改进的神经网络进行训练及识别.通过MATLAB进行了仿真实验,对比结果表明卷积神经网络有很好的特征提取性能及良好识别效果,比现有的算法有很大的优势.
推荐文章
一种基于融合深度卷积神经网络与度量学习的人脸识别方法
多Inception结构
深度卷积神经网络
度量学习方法
深度人脸识别
特征提取
损失函数融合
基于代价敏感卷积神经网络的人脸年龄识别方法
卷积神经网路
人脸年龄识别
误分类代价
代价敏感性
期望类最大原则
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
一种新的基于模糊RBF神经网络的人脸识别方法
模糊RBF神经网络
L-M算法
模糊神经分类器
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于卷积神经网络的人脸识别方法
来源期刊 信息技术与网络安全 学科 工学
关键词 人脸识别 卷积神经网络 特征提取
年,卷(期) 2017,(14) 所属期刊栏目 人工智能
研究方向 页码范围 49-51,56
页数 4页 分类号 TP391.9
字数 2636字 语种 中文
DOI 10.19358/j.issn.1674-7720.2017.14.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄洪琼 上海海事大学信息工程学院 28 117 6.0 9.0
2 于达岭 上海海事大学信息工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (83)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (2)
二级引证文献  (1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(6)
  • 参考文献(5)
  • 二级参考文献(1)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人脸识别
卷积神经网络
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导