基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种非相干字典学习及稀疏表示方法,并将其应用于单幅图像去雨.该方法在字典学习阶段,为降低有雨原子与无雨原子间的相似性,引入字典的非相干性,构建新的目标函数,不仅可以保证有雨字典与无雨字典的可分性,而且学习的非相干字典具有类似于紧框架的性质,可以逼近等角紧框架.通过有雨字典与无雨字典对高频图像的稀疏表示,能够更好地分离出高频图像中的有雨分量与无雨分量,将高频无雨分量与低频图像融合实现图像去雨.采用合成雨图与真实雨图对算法进行验证,实验结果表明,算法所学习的非相干字典具有较好的稀疏表示性能,去雨后的图像雨线残留较少,边缘细节保持较好,视觉效果更为清晰自然.
推荐文章
基于字典学习的图像稀疏去噪算法
稀疏字典
K-SVD算法
字典学习
稀疏去噪
采用共享空间稀疏表示的单幅图像超分辨率方法
超分辨率
稀疏表示
典型相关分析
自然图像先验
一种非零元个数约束的字典学习图像去噪算法
图像去噪
字典学习
稀疏表示
K-SVD
非零元个数
基于字典学习的超宽带信号稀疏表示与降噪方法
超宽带通信
稀疏表示
字典学习
信号降噪
稀疏多径信道
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向单幅图像去雨的非相干字典学习及其稀疏表示研究
来源期刊 通信学报 学科 工学
关键词 非相干字典 字典学习 稀疏表示 单幅图像去雨
年,卷(期) 2017,(7) 所属期刊栏目 学术论文
研究方向 页码范围 28-35
页数 8页 分类号 TP391.4
字数 4690字 语种 中文
DOI 10.11959/j.issn.1000-436x.2017149
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张小刚 湖南大学电气与信息工程学院 42 577 15.0 22.0
2 汤红忠 湘潭大学信息工程学院 28 238 9.0 14.0
11 王翔 湘潭大学信息工程学院 4 8 2.0 2.0
15 李骁 湘潭大学信息工程学院 3 13 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (9)
参考文献  (10)
节点文献
引证文献  (6)
同被引文献  (11)
二级引证文献  (2)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(4)
  • 引证文献(4)
  • 二级引证文献(0)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非相干字典
字典学习
稀疏表示
单幅图像去雨
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通信学报
月刊
1000-436X
11-2102/TN
大16开
北京市丰台区成寿路11号邮电出版大厦8层
2-676
1980
chi
出版文献量(篇)
6235
总下载数(次)
17
总被引数(次)
85479
论文1v1指导