基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
线性判别分析(LDA)方法在人脸识别特征提取中应用广泛.针对其在应用方面存在的缺陷,本文提出一种基于粒子群优化(PSO)的LDA算法(PSO-LDA)的人脸识别算法.通过粒子群优化算法找寻到矩阵的最佳投影矢量,避免了直接对矩阵求特征值和特征向量,并通过多次迭代来解决投影空间中边缘类相近样本重叠问题.在ORL库中进行对比实验,实验结果表明提出的方法抗噪性能好,能明显提高人脸识别率.该算法具有识别稳定和便于实现的特点.
推荐文章
基于LDA算法的人脸识别方法的比较研究
线性判别分析(LDA)
人脸识别
Eigenfaces
Fisherfaces
小样本问题
一种基于2DPCA和LDA的人脸表情识别算法
Gabor特征
2DPCA
LDA
C-Mean
KNN
基于SVD和LDA的人脸识别方法
人脸识别
奇异值分解
线性鉴别分析
反向传播神经网络
基于2D-PCA和2D-LDA的人脸识别方法
人脸识别
二维主分量分析
二维线性可分性分析
分类器融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-LDA的人脸识别算法
来源期刊 广西科技大学学报 学科 工学
关键词 线性判别分析 粒子群算法 最佳投影矢量 PSO-LDA
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 85-90
页数 6页 分类号 TP317.4
字数 2970字 语种 中文
DOI 10.16375/j.cnki.cn45-1395/t.2017.01.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王智文 广西科技大学计算机科学与通信工程学院 21 48 4.0 5.0
2 王鹏涛 广西科技大学电气与信息工程学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (109)
参考文献  (13)
节点文献
引证文献  (4)
同被引文献  (28)
二级引证文献  (4)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(6)
  • 参考文献(2)
  • 二级参考文献(4)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
线性判别分析
粒子群算法
最佳投影矢量
PSO-LDA
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广西科技大学学报
季刊
1004-6410
45-1395/T
大16开
广西柳州市东环路268号
1990
chi
出版文献量(篇)
1943
总下载数(次)
0
论文1v1指导