基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高语音情感识别的准确率,本文针对新的声门波信号频谱特征抛物线频谱参数(parabolic spectralparameter,PSP)和谐波丰富因子(harmonic richness factor,HRF)进行了研究,并将其应用到语音的情感识别中.提取6种不同情感(生气、害怕、高兴、中性、悲伤和惊奇)语音信号的发音速率和短时能量、基音频率、前3个共振峰、12阶Mel频率倒谱系数(MFCC)的最大值、最小值、变化范围和平均值等常用特征构成一个特征矢量,并利用主成分分析方法降维;提取声门波信号的频谱特征PSP和HRF,并分析了PSP和HRF的情感表达能力;采用深度学习栈式自编码算法对只有常用特征以及融合了声门波信号频谱特征后的特征进行分类.结果表明:融合声门波信号频谱特征后识别率更高.
推荐文章
基于情感特征分类的语音情感识别研究
语音情感识别
情感特征分类
改进D-S证据理论
证据信任度信息熵
动态先验权重
数据融合
融合语音和脉搏的多模态情感识别研究
多模态情感识别
语音
脉搏
梅尔倒谱系数
隐马尔科夫
决策级融合
基于特征参数融合的语音情感识别方法
语音情感识别
模糊熵
Mel频率倒谱
参数融合
基于基频特征的情感语音识别研究
语音信号
基频
情感特征
情感识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合声门波信号频谱特征的语音情感识别
来源期刊 测试技术学报 学科 工学
关键词 声门波信号 抛物线频谱参数 谐波丰富因子 栈式自编码 语音情感识别
年,卷(期) 2017,(1) 所属期刊栏目 信号检测、算法与仿真
研究方向 页码范围 8-16
页数 9页 分类号 TN912.3
字数 5143字 语种 中文
DOI 10.3969/j.issn.1671-7449.2017.01.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 乔晓艳 山西大学物理电子工程学院 57 477 10.0 19.0
2 李昊璇 山西大学物理电子工程学院 6 5 1.0 2.0
3 师宏慧 山西大学物理电子工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (2)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
声门波信号
抛物线频谱参数
谐波丰富因子
栈式自编码
语音情感识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测试技术学报
双月刊
1671-7449
14-1301/TP
大16开
太原13号信箱
22-14
1986
chi
出版文献量(篇)
2837
总下载数(次)
7
总被引数(次)
13975
论文1v1指导