基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对聚类算法在应用中分割速度慢、抑制噪声能力弱等问题,本文提出一种基于核模糊C-均值(Kernel Fuzzy Cmeans,KFCM)和融合期望最大化(EM)算法混合聚类的遥感图像分割.首先给原始KFCM算法引入隐含变量来对像素预定义类别,然后利用EM算法评价预定义的类别是否最优,以此完成对遥感图像的聚类分割.在利用EM算法进行评价时,对KFCM引入空间邻域信息,采用惯性权重对其初始化参数进行优化增强算法效率.与传统的聚类分割方法进行比较,研究结果表明,该方法速度快、效果好、精度也能满足应用要求,具有较高的应用价值.
推荐文章
核空间局部自适应模糊C-均值聚类图像分割算法
自适应中值算法
模糊C-均值聚类
核函数
局部空间信息
新的鲁棒模糊C-均值聚类分割算法及其应用
图像分割
模糊C-均值聚类
聚类中心表达式
划分系数
基于邻域的多尺度模糊C-均值聚类图像分割
邻域
多尺度
模糊C-均值聚类
图像分割
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于核模糊C-均值和EM混合聚类算法的遥感图像分割
来源期刊 液晶与显示 学科 地球科学
关键词 遥感图像 核模糊C-均值 EM 空间邻域 惯性权重
年,卷(期) 2017,(12) 所属期刊栏目 图像处理
研究方向 页码范围 999-1005
页数 7页 分类号 P2
字数 4115字 语种 中文
DOI 10.3788/YJYXS20173212.0999
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王民 西安建筑科技大学信息与控制工程学院 108 458 11.0 17.0
2 贠卫国 西安建筑科技大学信息与控制工程学院 36 152 6.0 10.0
3 王静 西安建筑科技大学信息与控制工程学院 35 239 9.0 14.0
4 张鑫 西安建筑科技大学信息与控制工程学院 21 75 3.0 8.0
5 卫铭斐 西安建筑科技大学信息与控制工程学院 29 102 5.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (86)
共引文献  (62)
参考文献  (12)
节点文献
引证文献  (5)
同被引文献  (23)
二级引证文献  (3)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(10)
  • 参考文献(2)
  • 二级参考文献(8)
2012(10)
  • 参考文献(3)
  • 二级参考文献(7)
2013(8)
  • 参考文献(2)
  • 二级参考文献(6)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(4)
  • 引证文献(3)
  • 二级引证文献(1)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
遥感图像
核模糊C-均值
EM
空间邻域
惯性权重
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
液晶与显示
月刊
1007-2780
22-1259/O4
大16开
长春市东南湖大路3888号
12-203
1986
chi
出版文献量(篇)
3141
总下载数(次)
7
总被引数(次)
21631
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导