原文服务方: 计算机应用研究       
摘要:
模糊C-均值(FCM)算法对图像噪声敏感,聚类过程中只考虑图像的数值特征信息而忽略像素间空间约束关系,同时单一隶属度并不能充分描述图像的不确定性,这使得基于FCM的图像分割不够准确.融入局部信息的改进FCM算法虽然对图像噪声有一定鲁棒性,但对图像细节保持不够,难以分割微小区域.针对上述问题,提出一种基于直觉模糊集的改进模糊C-均值(IFS_FCM)图像分割算法.该方法将直觉模糊集理论融入到FCM中,充分考虑图像的不确定性,同时在目标函数中引入空间邻域信息,使得该分割算法对噪声鲁棒性增强的同时还能保持图像细节信息.实验结果表明,IFS_FCM能获得更加理想的图像分割效果.
推荐文章
基于空间信息的直觉模糊C-均值图像分割算法
空间信息
直觉模糊集
模糊C-均值
图像分割
核空间局部自适应模糊C-均值聚类图像分割算法
自适应中值算法
模糊C-均值聚类
核函数
局部空间信息
一种改进的核可能性C-均值聚类图像分割算法
可能性C-均值聚类
目标函数求解
自适应中值滤波
局部空间信息
图像分割
实验分析
新的鲁棒模糊C-均值聚类分割算法及其应用
图像分割
模糊C-均值聚类
聚类中心表达式
划分系数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种融入局部信息的直觉模糊C-均值聚类图像分割算法
来源期刊 计算机应用研究 学科
关键词 图像分割 模糊C-均值 直觉模糊集 空间邻域
年,卷(期) 2014,(9) 所属期刊栏目
研究方向 页码范围 2864-2866,2872
页数 4页 分类号 TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2014.09.073
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 范九伦 西安邮电大学通信与信息工程学院 250 2961 27.0 43.0
2 赵凤 西安邮电大学通信与信息工程学院 29 651 10.0 25.0
3 娄昊 武警工程大学信息工程系 12 92 6.0 9.0
4 王昭 西安邮电大学通信与信息工程学院 2 29 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (38)
参考文献  (12)
节点文献
引证文献  (25)
同被引文献  (82)
二级引证文献  (88)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(6)
  • 参考文献(5)
  • 二级参考文献(1)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(3)
  • 引证文献(2)
  • 二级引证文献(1)
2016(12)
  • 引证文献(8)
  • 二级引证文献(4)
2017(20)
  • 引证文献(8)
  • 二级引证文献(12)
2018(25)
  • 引证文献(5)
  • 二级引证文献(20)
2019(31)
  • 引证文献(2)
  • 二级引证文献(29)
2020(22)
  • 引证文献(0)
  • 二级引证文献(22)
研究主题发展历程
节点文献
图像分割
模糊C-均值
直觉模糊集
空间邻域
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导