基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 L1跟踪对局部遮挡具有良好的鲁棒性,但存在易产生模型漂移和计算速度慢的问题.针对这两个问题,该文提出了一种基于判别稀疏表示的视觉跟踪方法.方法 考虑到背景和遮挡信息的干扰,提出了一种判别稀疏表示模型,并基于块坐标优化原理,采用学习迭代收缩阈值算法和软阈值操作设计出了表示模型的快速求解算法.结果 在8组图像序列中,该文方法与现有的4种经典跟踪方法分别在鲁棒性和稀疏表示的计算时间方面进行了比较.在鲁棒性的定性和定量比较实验中,该文方法不仅表现出了对跟踪过程中的多种干扰因素具有良好的适应能力,而且在位置误差阈值从0~50像素的变化过程中,其精度曲线均优于实验中的其他方法;在稀疏表示的计算时间方面,在采用大小为16×16和32×32的模板进行跟踪时,该文算法的时间消耗分别为0.152 s和0.257 s,其时效性明显优于实验中的其他方法.结论 与经典的跟踪方法相比,该文方法能够在克服遮挡、背景干扰和外观改变等诸多不良因素的同时,实现快速目标跟踪.由于该文方法不仅具有较优的稀疏表示计算速度,而且能够克服多种影响跟踪鲁棒性的干扰因素,因此可以将其应用于视频监控和体育竞技等实际场合.
推荐文章
基于HTP稀疏表示的鲁棒目标追踪方法
目标追踪
稀疏表示
硬阈值追踪
计算量
基于加权分块稀疏表示的光照鲁棒性人脸识别
人脸识别
光照归一化
稀疏表示
加权分块
一种鲁棒稀疏表示的单样本人脸识别算法
稀疏表示
单样本
人脸识别
位置图像
L2,1范数
基于深度特征的稀疏表示目标跟踪算法
目标跟踪
稀疏表示
卷积神经网络
生成模型
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 判别稀疏表示鲁棒快速视觉跟踪
来源期刊 中国图象图形学报 学科 工学
关键词 机器视觉 目标跟踪 判别稀疏表示 前馈神经网络 粒子滤波
年,卷(期) 2017,(6) 所属期刊栏目 图像分析和识别
研究方向 页码范围 815-823
页数 9页 分类号 TP391.4
字数 5921字 语种 中文
DOI 10.11834/jig.160624
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 薛模根 陆军军官学院偏振光成像探测技术安徽省重点实验室 13 76 6.0 8.0
2 袁广林 陆军军官学院十一系 11 50 5.0 6.0
3 刘文琢 陆军军官学院偏振光成像探测技术安徽省重点实验室 4 4 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (7)
参考文献  (5)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器视觉
目标跟踪
判别稀疏表示
前馈神经网络
粒子滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导