基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
红外图像信噪比和对比度较低、缺乏颜色纹理信息、目标周围有光晕效应、边缘模糊,这些缺点对红外图像中人体目标检测提出了挑战.本文对复杂环境下红外图像序列中运动人体目标检测技术进行研究.首先采用基于改进的混合高斯模型(Gaussian mixture model,GMM)的背景减除法对人体目标进行分割,通过多个带有权值的高斯过程来描述复杂变化的背景,对模型个数、权值、学习率进行更新.然后对分割得到感兴趣区域(Region of interest,ROI)采用融合边缘方向累加和特性的梯度方向直方图(Accumulation of oriented edge and histogram of oriented gradient,AOE-HOG)进行特征描述,利用支持向量机(Support vector machine,SVM)实现对人体目标分类检测.实验表明,本文算法能够在复杂场景下正确检测出人体目标,对于多目标距离较近甚至有部分粘连的情形,也具有较好效果.
推荐文章
天空背景下红外弱小目标检测算法研究
红外弱小目标
形态学滤波
恒虚警检测
行程目标标记
管道滤波
基于多向梯度背景预测的红外目标检测算法
背景预测
多向梯度
阈值
弱小目标
海空复杂背景下红外弱点目标的检测算法
红外图像处理
点目标检测
小波变换
复杂背景中红外多光谱目标检测算法研究
红外图像
弱小目标
多光谱
目标检测
MHT算法
特征向量
背景抑制算法
信噪比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 复杂背景下红外人体目标检测算法研究
来源期刊 红外技术 学科 工学
关键词 红外图像 人体检测 混合高斯模型 边缘方向累加和 梯度方向直方图 支持向量机
年,卷(期) 2017,(11) 所属期刊栏目 图像处理与仿真
研究方向 页码范围 1038-1044,1053
页数 8页 分类号 TP391.4
字数 5611字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (157)
参考文献  (8)
节点文献
引证文献  (7)
同被引文献  (38)
二级引证文献  (1)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
红外图像
人体检测
混合高斯模型
边缘方向累加和
梯度方向直方图
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
红外技术
月刊
1001-8891
53-1053/TN
大16开
昆明市教场东路31号《红外技术》编辑部
64-26
1979
chi
出版文献量(篇)
3361
总下载数(次)
13
总被引数(次)
30858
论文1v1指导