基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了改善多目标粒子群优化算法生成的最终Pareto前端的多样性和收敛性,提出了一种针对多目标粒子群算法进化状态的检测机制.通过对外部Pareto解集的更新情况进行检测,进而评估算法的进化状态,获取反馈信息来动态调整进化策略,使得算法在进化过程中兼顾近似Pareto前端的多样性和收敛性.最后,在ZDT系列测试函数中,将本文算法与其他4种对等算法比较,证明了本文算法生成的最终Pareto前端在多样性和收敛性上均有显著的优势.
推荐文章
可行性规则动态调整的多目标粒子群算法
粒子群算法
多目标优化
惯性权重
动态加权法
可行性规则
基于粒子群算法的钻进参数多目标优化
钻进参数
多目标优化
机械钻速
粒子群
基于动态邻居和变异因子的多目标粒子群算法
动态邻居
多目标优化
粒子群算法
基于自适应学习的多目标粒子群优化算法
粒子群优化
多目标优化
自适应惯性权值
聚类排挤
最优搜索方向学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于动态调整的多目标粒子群优化算法
来源期刊 计算机系统应用 学科
关键词 多目标优化 粒子群算法 反馈信息 进化状态
年,卷(期) 2017,(7) 所属期刊栏目 软件技术·算法
研究方向 页码范围 161-166
页数 6页 分类号
字数 4515字 语种 中文
DOI 10.15888/j.cnki.csa.005820
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (86)
参考文献  (8)
节点文献
引证文献  (5)
同被引文献  (6)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多目标优化
粒子群算法
反馈信息
进化状态
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
相关基金
山东省自然科学基金
英文译名:Natural Science Foundation of Shandong Province
官方网址:http://kyc.wfu.edu.cn/second/wnfw/shandongshengzirankexuejijin.htm
项目类型:重点项目
学科类型:
论文1v1指导