基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,微博用户都凭借其自身在社区中的影响力来对信息传播做出贡献,尤其是活跃的大V用户能够引起信息广泛的传播.为了在微博社区中提高用户影响力衡量的准确性,提出了一种基于传统的PageRank算法和用户交互行为的用户影响力改进算法(IUIR算法),此算法通过直接质量指数和间接质量指数来构建微博用户的质量指数,再结合近期用户的活跃度来构造用户影响力评价公式.在新浪微博数据集上进行实验,并与传统的PageRank算法作比较,结果表明,该算法能够更有效地反映微博用户影响力的排名.
推荐文章
基于PageRank的微博用户影响力算法研究
PageRank
新浪微博
用户影响力
用户自身行为
融合用户行为和内容的微博用户影响力方法
微博
影响力
用户行为
信息传播
LDA模型
基于用户行为综合分析的微博用户影响力评价方法
微博用户
传播影响力
用户行为
PageRank
影响覆盖率
一种改进的微博用户影响力评估算法
微博
社交网络
影响力
PageRank算法
传播率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种新的微博社区用户影响力评估算法
来源期刊 计算机应用与软件 学科 工学
关键词 微博社区 用户影响力 用户质量指数 近期活跃度 PageRank算法
年,卷(期) 2017,(7) 所属期刊栏目 算法
研究方向 页码范围 212-216,261
页数 6页 分类号 TP391
字数 6412字 语种 中文
DOI 10.3969/j.issn.1000-386x.2017.07.039
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨长春 常州大学信息科学与工程学院 52 366 10.0 17.0
2 刘玲 常州大学信息科学与工程学院 2 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (41)
参考文献  (7)
节点文献
引证文献  (6)
同被引文献  (11)
二级引证文献  (3)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(5)
  • 引证文献(3)
  • 二级引证文献(2)
2020(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
微博社区
用户影响力
用户质量指数
近期活跃度
PageRank算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导