原文服务方: 河南科学       
摘要:
在变形数据分析与建模中,同时考虑变形体测点之间的时间相关性以及空间相关性的时空序列模型(STARMA)能够更好地反映出变形体的形变规律,但STARMA模型是建立在线性平稳模型基础上的,且大多数观测数据序列是非平稳过程,这给时空序列模型的应用带来了局限性.由于BP神经网络具有很强的非线性映射能力,基于此,结合这两种模型的特点,构造ANN+SRATMA混合模型来处理非平稳序列.通过对建筑物的沉降观测进行分析研究,结果表明了混合模型要优于单一模型,具有很好的实用性.
推荐文章
基于差异进化算法的前馈神经网络在大坝变形监测中的应用
大坝变形监测
差异进化算法
前馈神经网络
BP神经网络
回归模型
人工神经网络在引水隧洞变形监测中的应用
引水隧洞
收敛变形
人工神经网络
BP网络
基于混合算法优化神经网络的混沌时间序列预测
神经网络
粒子群优化
模拟退火
混沌时间序列
基于构造性神经网络的时间序列混合预测模行
时间序列预测
构造性神经网络
统计时间序列模型
产量预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络与时空序列的混合模型在变形监测中的应用
来源期刊 河南科学 学科
关键词 非平稳时空序列 STARMA模型 BP神经网络 沉降监测
年,卷(期) 2017,(2) 所属期刊栏目 地球科学
研究方向 页码范围 227-233
页数 7页 分类号 P258
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王涛 68 369 10.0 17.0
5 柳新强 17 11 2.0 2.0
6 焦佳爽 长安大学地质工程与测绘学院 15 26 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (69)
共引文献  (280)
参考文献  (20)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1948(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(11)
  • 参考文献(4)
  • 二级参考文献(7)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(6)
  • 参考文献(5)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(5)
  • 参考文献(5)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非平稳时空序列
STARMA模型
BP神经网络
沉降监测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南科学
月刊
1004-3918
41-1084/N
大16开
1982-01-01
chi
出版文献量(篇)
7108
总下载数(次)
0
论文1v1指导