基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了对电池电解液密度进行预测,建立了BP神经网络模型,用电池充放电试验数据对其进行了训练和检验.利用训练后的神经网络模型进行了电池电解液密度的预测,预测值与实测值的最大误差值为0.020 9 g/cm3,均方根误差值为0.004 0 g/cm3左右.结果表明,BP神经网络方法可以满足预测精度要求,从而可用于建立电池剩余电量实时监测系统,降低电池维护工作量并延长电池的使用寿命.
推荐文章
基于RBF神经网络的电池电解液密度预测
电池
RBF神经网络
径向基函数
电解液密度
SOC
基于贝叶斯正则化算法BP神经网络钒电池SOC预测
钒电池
荷电状态
BP神经网络
贝叶斯正则化算法
基于GA-LM-BP神经网络的锂离子电池预测研究
BP神经网络
锂离子电池
预测
基于BP神经网络的表面硬度预测模型
BP神经网络
激光相变硬化
扫描参数
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的电池电解液密度预测
来源期刊 电源技术 学科 工学
关键词 电池 BP神经网络 电解液密度 SOC
年,卷(期) 2017,(11) 所属期刊栏目 研究与设计
研究方向 页码范围 1605-1607
页数 3页 分类号 TM912
字数 3914字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭澎 6 13 2.0 3.0
2 杜灵根 3 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (62)
参考文献  (3)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电池
BP神经网络
电解液密度
SOC
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电源技术
月刊
1002-087X
12-1126/TM
大16开
天津296信箱44分箱
6-28
1977
chi
出版文献量(篇)
9323
总下载数(次)
56
总被引数(次)
55810
论文1v1指导