作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
大多数现有的基于稀疏表示的视觉跟踪算法大都通过模板的线性组合来重构目标,但是没有考虑模板与模板之间以及模板与候选目标之间的非线性关系,造成算法对目标的判别能力下降,在复杂环境下容易跟踪失败.为了解决上述问题,提出一种结合核协作表示的目标跟踪算法,利用核函数将候选目标与模板映射到高维核空间,得到它们的非线性表示,并在高维核空间求解目标的稀疏系数,提高算法对目标的判别能力.为提高跟踪速度,选用l2最小化方法.实验结果表明,本文算法在跟踪精度与鲁棒性方面都有较大提高.
推荐文章
基于深度特征的稀疏表示目标跟踪算法
目标跟踪
稀疏表示
卷积神经网络
生成模型
深度学习
改进的核相关滤波目标跟踪算法
视频跟踪
核相关滤波
尺度计算
角度计算
遮挡检测
采用互补特征的核相关滤波目标跟踪算法
目标跟踪算法
核相关滤波
互补特征
自适应权重
颜色特征
方向梯度直方图特征
基于稀疏表示和特征选择的LK目标跟踪
视觉跟踪
稀疏表示
LK图像配准算法
特征选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于核协作表示的目标跟踪算法
来源期刊 小型微型计算机系统 学科 工学
关键词 核协作表示 目标跟踪 稀疏表示 核空间 非线性表示
年,卷(期) 2017,(10) 所属期刊栏目 人工智能与算法研究
研究方向 页码范围 2253-2257
页数 5页 分类号 TP391
字数 5025字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭力 江南大学物联网工程学院 148 814 15.0 21.0
2 卢钢 江南大学物联网工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (2)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(5)
  • 参考文献(3)
  • 二级参考文献(2)
2014(5)
  • 参考文献(3)
  • 二级参考文献(2)
2015(6)
  • 参考文献(5)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
核协作表示
目标跟踪
稀疏表示
核空间
非线性表示
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导