基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高船舶交通流预测的效率和准确率,分析了船舶流量预测中的影响因素多、非线性、随机性等问题,建立了ELM(极限学习机)预测模型.同时为了避免极限学习机算法受输入权值矩阵和隐含层偏差随机性的影响,算法又采用GA(遗传算法)对极限学习机的输入权值矩阵和隐含层偏差进行优化,建立GA-ELM船舶交通流预测模型.利用上海洋山港船舶流量对该模型进行了实例分析,通过MATLAB仿真进行预测,将GA-ELM模型与单纯的BP模型、ELM模型进行对比和分析,结果表明:GA-ELM模型具有更高的预测精度和效率,从而能够相对准确、高效地对船舶交通流量进行预测.
推荐文章
优化的长山水道船舶交通流量灰色系统预测模型
水路运输
船舶交通流量
灰色预测
GM(1,1)优化模型
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
船舶交通流量预测的灰色神经网络模型
船舶交通量
灰色模型
神经网络
基于GA-WNN神经网络模型的交通流量预测
遗传算法
小波神经网络
小波基函数
BP神经网络
预测模型
交通流量
Matlab
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GA优化ELM的船舶交通流预测模型
来源期刊 微型机与应用 学科 工学
关键词 船舶交通流量 遗传算法 极限学习机 预测
年,卷(期) 2017,(9) 所属期刊栏目 软件与算法
研究方向 页码范围 15-17,21
页数 4页 分类号 TP391.9
字数 2499字 语种 中文
DOI 10.19358/j.issn.1674-7720.2017.09.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄洪琼 上海海事大学信息工程学院 28 117 6.0 9.0
2 崔翔鹏 上海海事大学信息工程学院 1 9 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (28)
参考文献  (6)
节点文献
引证文献  (9)
同被引文献  (28)
二级引证文献  (6)
1996(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(8)
  • 引证文献(2)
  • 二级引证文献(6)
研究主题发展历程
节点文献
船舶交通流量
遗传算法
极限学习机
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导