作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有的手势识别均采用有监督模型进行特征提取和识别的现状,提出一种基于PCA的深度信念网(DBN)的半监督的手势特征提取与识别方法.运用所提方法进行了大量的实验,证明该方法与直接将图片输入到DBN网络相比,可以有效降低DBN的训练时间,并且识别率也有所提高;并且该方法与传统的有监督的SVM的手势识别方法相比,训练时间大幅度减少而识别率也有很大的提升.最后,对该方法进行了鲁棒性验证,经过大量实验,证明了其具有很强的鲁棒性.
推荐文章
基于Kinect深度信息的手势提取与识别研究
手势识别
深度信息
三维点云
人机交互
支持向量机
基于深度学习的手势识别算法设计
深度学习
卷积神经网络
实时手势识别
高效性
复杂背景下基于深度学习的手势识别
手势识别
复杂背景
手势检测
深度学习
人机交互
基于LBP和PCA机器学习的手势识别算法
手势识别
局部二值模式
主成分分析
支持向量机
机器学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PCA的深度信念网的手势识别研究
来源期刊 微型机与应用 学科 工学
关键词 手势识别 PCA 深度信念网 SVM 鲁棒性
年,卷(期) 2017,(13) 所属期刊栏目 人工智能
研究方向 页码范围 55-58
页数 4页 分类号 TP391.9
字数 2922字 语种 中文
DOI 10.19358/j.issn.1674-7720.2017.13.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐旭雄 上海海事大学信息工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (38)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
手势识别
PCA
深度信念网
SVM
鲁棒性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
相关基金
航空科学基金
英文译名:
官方网址:http://www.chinaasfc.cn/file_show.asp?LanMuID=GZZD0100
项目类型:面上项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导