在人机交互领域,针对复杂背景下手势识别率低、算法鲁棒性差的间题,基于深度学习提出一种手势识别算法HGDR-Net(hand gesture detection and recognition network).该算法由手势检测和识别2部分构成.在手势检测阶段,为解决复杂背景下手势区域提取困难的间题,基于改进的YOLO(you only look once)算法进行手势检测.改进的YOLO算法结合了手势检测的特点,解决了原始YOLO对小物体检测效果差、定位准确度不高的间题.在识别阶段,利用卷积神经网络(CNN)进行识别,并针对手势区域的尺寸多样性引入了空间金字塔池化(SPP)来解决CNN的多尺度输入间题.最后在训练过程中联合线下和实时2种数据增强方法避免过拟合间题,提升HGDR-Net的泛化能力.在NUS-II和Marcel两个复杂背景的公共数据集上进行了验证实验,识别率分别达到98.65%和99.59%.结果表明本文算法能准确地从各种复杂背景中识别手势,相比于基于人工提取特征的传统算法和其他基于CNN的算法具有更高的识别准确率和更强的鲁棒性.