原文服务方: 计算机测量与控制       
摘要:
信息技术的高速发展促进了信息领域内涵的根本性变革,信息特征的表述方法和内涵不断扩充,高维特征大幅涌现;这些高维特征中可能存在许多不相关和冗余特征,造成了维度灾难,这对基于特征空间聚散特性的分类识别算法提出了更高的要求,需要利用特征选择算法,降低特征向量维数并消除数据噪音的干扰;针对高维特征向量引入的维度灾难等问题,围绕目标分类识别的具体应用,基于标准的序列浮动前向特征选择算法,完成交叉验证重复次数优化,提出了改进的特征选择算法;通过仿真实验表明,基于Bayesian分类器开展识别时,改进算法能够在确保分类识别正确率的前提下,有效提升特征选择的计算速度,并维持一个相对更为收敛且稳定的置信区间,具备良好的准确度.
推荐文章
基于改进SFS特征选择BP识别算法
特征选择
SFS
BP网络
收敛速度
基于改进烟花算法的SVM特征选择和参数优化
二进制编码
烟花算法
特征选择
参数优化
基于改进特征选择RF算法的红外光谱建模方法
特征选择
随机森林
比例采样
红外光谱
基于改进的和声搜索算法的特征基因选择方法
微阵列数据
特征基因
ReliefF算法
声搜索算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于标准序列浮动前向特征选择的改进算法研究
来源期刊 计算机测量与控制 学科
关键词 特征选择 浮动前向选择 Bayesian分类器 目标识别
年,卷(期) 2017,(7) 所属期刊栏目 设计与应用
研究方向 页码范围 294-297
页数 4页 分类号 TP751.1
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2017.07.073
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 石玲玲 5 11 2.0 3.0
2 周阳 6 60 3.0 6.0
3 周桃 10 7 2.0 2.0
4 周炎 9 12 2.0 3.0
5 任卉 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (6)
参考文献  (12)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1978(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
特征选择
浮动前向选择
Bayesian分类器
目标识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导