基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在UWB-IR信号检测中,针对目前所采用的量子粒子群FHN神经元模型易造成粒子群多样性降低,易陷入局部最优,导致求解精度不高的问题,对量子粒子群算法中量子更新参数引入混沌优化算法,提出了基于混沌量子粒子群算法的FHN神经元UWB-IR信号检测方法,分析了所提算法的收敛性,并对所提算法的性能进行仿真验证.仿真结果表明,所提算法与现有算法相比,可提高粒子群的多样性和算法的收敛速度,提高算法精度,实现多个系统参数同时最优,从不同噪声强度下自适应地检测出UWB-IR信号.
推荐文章
一种基于量子粒子群的过程神经元网络学习算法
过程神经元网络
量子粒子群
网络训练
算法设计
基于量子粒子群算法的移动节点覆盖优化
无线传感器网络
量子
粒子群
覆盖优化
覆盖率
基于量子粒子群算法求解整数规划
粒子群算法
量子粒子群算法
整数规划
一种基于量子粒子群的过程神经元网络学习算法
过程神经元网络
量子粒子群
网络训练
算法设计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混沌量子粒子群的FHN神经元UWB信号检测
来源期刊 计算机工程与应用 学科 工学
关键词 超宽带 信号检测 FHN神经元模型 混沌量子粒子群
年,卷(期) 2017,(6) 所属期刊栏目 网络、通信与安全
研究方向 页码范围 135-140
页数 6页 分类号 TN911.23
字数 6616字 语种 中文
DOI 10.3778/j.issn.1002-8331.1607-0066
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张群 空军工程大学信息与导航学院 228 1290 15.0 23.0
2 蒋磊 空军工程大学信息与导航学院 32 131 5.0 9.0
3 刘潇文 空军工程大学信息与导航学院 5 22 4.0 4.0
4 陈博文 空军工程大学信息与导航学院 2 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (63)
共引文献  (116)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (29)
二级引证文献  (0)
1981(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(14)
  • 参考文献(1)
  • 二级参考文献(13)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超宽带
信号检测
FHN神经元模型
混沌量子粒子群
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导